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Persistence properties of a system of coagulating and annihilating random walkers
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We study ad-dimensional system of diffusing particles that on contact either annihilate with probability
1/(q21) or coagulate with probability (q22)/(q21). In one dimension, the system models the zero-

temperature Glauber dynamics of domain walls in theq-state Potts model. We calculateP̄(m,t), the probabil-
ity that a randomly chosen lattice site contains a particle whose ancestors have undergone exactly (m21)
coagulations. Using perturbative renormalization group analysis ford,2, we show that, if the number of

coagulationsm is much less than the typical numberM (t), then P̄(m,t);mz/dt2u, with u5dQ1Q(Q
21/2)e1O(e2), z5(2Q21)e1(2Q21)(Q21)(1/21AQ)e21O(e3), whereQ5(q21)/q, e522d and
A520.006 . . . . M (t) is shown to scale asM (t);td/22d, whered5d(12Q)1(Q21)(Q21/2)e1O(e2).

In two dimensions, we show thatP̄(m,t); ln(t)Q(322Q)ln(m)(2Q21)2t22Q for m!t2Q21. We also derive an exact
nonperturbative relation between the exponents: namelyd(Q)5u(12Q). The one-dimensional results corre-
sponding toe51 are compared with results from Monte Carlo simulations.

DOI: 10.1103/PhysRevE.68.046103 PACS number~s!: 05.10.Cc, 05.70.Ln, 82.40.Qt
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I. INTRODUCTION

Persistence is understood as a property of an evolv
system to ‘‘remember’’ its initial configuration for anoma
lously long times. A particular case of persistence that
received much attention is that of site persistence~see Ref.
@1# for a review!. The site persistence probability is define
as the probability that the values of a dynamical variable
given set of sites do not change up to timet. For instance, in
a spin system this could be the probability that a spin a
given site does not flip up to timet, or in a reaction-diffusion
system, the probability that no reaction takes place at
site up to timet. In many cases the site persistence proba
ity decays at large times as a power law@2#.

A natural generalization of site persistence is persiste
of a pattern present in the initial configuration@3#. An in-
stance of pattern persistence would be the survival of a
particle in a random environment. Examples of the rand
environment include diffusing traps@4–7#, reaction-diffusion
systems such asAi1Aj→Ai 1 j with mass dependent diffu
sion rates@8–10#, and predators in predator-prey mode
@11,12#. The problem of analytical calculation of the surviv
probability of the test particle is hard, mainly because in
rest frame of the test particle, the motion of the other p
ticles is correlated.

Experimental studies of site and pattern persistence h
been done on systems such as soap froths, nematic li
crystals, and breath figures. For more examples, see R
@3,15#, and references within.

The one-dimensional Potts model has been a tes
ground for various concepts of persistence. The site pe
tence problem mentioned above, has been exactly solve
the one-dimensionalq-state Potts model evolving via zero
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temperature Glauber dynamics@13#. Besides site persistence
several other persistence properties of the Potts model h
been studied. Among these are the probability that a dom
wall has never encountered another domain wall@3,14,15#,
and the probability that a domain present in the initial co
figuration survives up to timet @16#. The former problem has
been studied numerically@3,15#, by mean-field approxima-
tions @3# and perturbatively nearq51 @14#. However, the
results obtained by these techniques do not approximate
the numerical results in the whole range ofq.

In dimensions greater than 1, the dynamics of dom
walls in the Potts model is difficult to treat analytically. In
stead, we note that in one dimension, the zero-tempera
Glauber dynamics of theq-state Potts model is equivalent t
a system of diffusing particles that on contact either ann
late with probability 1/(q21) or coagulate with probability
(q22)/(q21) @17–19#. We study the persistence properti
of this reaction-diffusion system in an arbitrary number
dimensions using the renormalization group method and
culate the exponents as ane expansion.

The question that we ask is, given this reaction-diffusi
system, what is the fraction of particles that have never
countered another particle up to timet? More generally, what
is the fraction of particles whose ancestors have undergonm
coagulations up to timet? A convenient way to keep track o
the history of coagulations is to assign a mass to each
ticle as follows. At timet50, let all particles be of mass 1
Each time two particles coagulate, the new particle ha
mass which is the sum of the masses of the two parent
ticles. It is clear that the particles of massm will be those
whose ancestors have undergone exactly (m21) coagula-
tions.

Let P̄(m,t) be the probability that a randomly chosen s
at time t contains a particle of massm. Let N̄(t) and r̄(t)
denote the average particle density and average mass de
respectively. Then, the probability distributionP̄(m,t) is ex-
pected to have the scaling form
©2003 The American Physical Society03-1
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P̄~m,t !5
N̄~ t !2

r̄~ t !
f S l m

At
D , ~1!

where l m5@m/ r̄(t)#1/d is the length scale associated wi
mass. The large time behavior ofr̄(t) and P̄(m,t) is char-
acterized by two exponentsd and u. The mass density
r̄(t);t2d. For masses much smaller than the typical ma
P̄(m,t) decays as a power law in time asmz/dt2u. We will
call u the persistence exponent. The exponentz characterizes
the smallx behavior of the scaling functionf (x) to be f (x)
;xz for x!1. Then,z52d(u1d2d)/(d22d), where we
have used the fact thatN̄(t);t2d/2 in dimensions less than
@20#. The two independent exponentsu andd are known for
some limiting cases.

When q52, the model reduces to the reaction-diffusi
modelA1A→B. All particles are of mass 1 and it is know
that P̄(1,t);t2d/2 for d,2 and P̄(1,t); ln(t)/t for d52
@21,20#. Hence,d5d/2, u5d/2 andz50 for q52. When
q5`, the model is equivalent to the reaction-diffusion sy
tem Ai1Aj→Ai 1 j @22–24,18,25,10#. Since mass is con
served,d50. It has been shown thatu5d1e/21O(e2) and
z5e1O(e2) for e522d.0 @10#. In two dimensions
P̄(m,t); ln(m)ln(t)/t @10#. In one dimension, it is known via
an exact calculation thatP̄(m,t);mt23/2 @22#. Whenq'1,
u has been calculated perturbatively to beu5(q
21)3A3/(2p)1O„(q21)2

… @14#. However for arbitrary
values ofq, the only known analytical result follows from
mean-field approximation@3#. But the numerically obtained
values ofu differ from the corresponding mean-field valu
by up to 50%~also, see Fig. 4!. In this paper, we address th
issue by using the renormalization group formalism to s
tematically calculateP̄(m,t) for arbitraryq.

We now summarize our main results and give an outl
of the rest of the paper. In Sec. II, we give a precise defi
tion of the model and derive the stochastic partial differen
equations obeyed by the mass distribution. In Sec. III
express the exponentd in terms of the exponentu, though at
a different value ofq, reducing the number of unknown ex
ponents to one. We show that

d~q!5uS q

q21D . ~2!

Thus,

z~q!5

2dFu~q!1uS q

q21D2dG
d22uS q

q21D . ~3!

In Sec. IV we use the technique developed in Ref.@10# to
calculate the persistence exponentu as an e expansion,
wheree522d.0. We show that

u5dQ1Q~Q2 1
2 !e1O~e2!, ~4!
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where Q5(q21)/q. If d52, the scaling form Eq.~1!
breaks down due to logarithmic corrections. We calcul
these corrections to be

P̄~m,t !;
ln~ t !Q(322Q)ln~m!(2Q21)2

t2Q
, ~5!

given that t→` and m!M (t), where M (t) is mass of a
typical particle at timet. The analytical results foru andd in
one dimension obtained by puttinge51 are compared with
the results from numerical simulations.

In Sec. V we show that the coefficient ofen in Eq. ~4! is
a polynomial of degree 2n in the variableQ5(q21)/q.
This observation allows us to calculate the two-loop corr
tions to the exponentz to be

z5~2Q21!e1~2Q21!~Q21!~ 1
2 1AQ!e21O~e3!,

~6!

where A520.006 . . . . Theanalytical results forz in one
dimension obtained by puttinge51 are compared with the
results from numerical simulations.

Finally, we conclude with a summary and discussion
Sec. VI.

II. MODEL AND FIELD THEORETIC FORMULATION

In this section, we define the model and derive the s
chastic partial differential equation obeyed by the mass
tribution. Consider ad-dimensional lattice whose sites ma
be occupied by particles that possess a positive inte
mass. Multiple occupancy of a lattice site is allowed. Giv
a certain configuration of particles on this lattice, the syst
evolves in time via the following microscopic moves.~i!
With rateD, each particle hops to a nearest neighbor latt
site. ~ii ! With ratelc , two particles at the same site coag
late together to form a new particle whose mass is the sum
the masses of the two parent particles.~iii ! With ratela , two
particles at the same site annihilate each other. To make
nection with the model discussed in the Introduction,
have to chooselc5l(q22)/(q21) and la5l/(q21)
wherel is a reaction rate. The limitl→` corresponds to
instantaneous reactions. In dimensionsd<2 and in the limit
of large time, the statistical properties of a finite reaction r
particle system were shown to be equivalent to those o
system with infinite reaction rates@10#. However, from the
field theoretic point of view, it is more convenient to wor
with finite reaction rates, and hencel will be taken to be
finite in this paper.

Starting from the master equation for the time evoluti
of the system, we now derive the effective field theory of t
model. Let$ni% denote the configuration of particles at sitei
such thatni ,m is the number of particles of massm at sitei.
Let P( . . . $ni%,$nj%, . . . ;t) be the probability of the con-
figuration ( . . .$ni%,$nj%, . . . ) at time t, where i and j are
nearest neighbors. The master equation describing the
evolution ofP( . . . $ni%,$nj%, . . . ;t) is
3-2
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dP~ . . . $ni%,$nj%, . . . !

dt
52D(̂

i j &
F(

m
~ni ,m1nj ,m!P~$ni%,$nj%!2(

m
~ni ,m11!P~$ni ,m11%,$nj ,m21%!

2(
m

~nj ,m11!P~$ni ,m21%,$nj ,m11%!G2lc(
i F (

mÞm8
ni ,mni ,m8P~$ni%!

1(
m

ni ,m~ni ,m21!P~$ni%!2 (
mÞm8

~ni ,m11!~ni ,m811!P~$ni ,m11,ni ,m811,ni ,m1m821%!

2(
m

~ni ,m12!~ni ,m11!P~$ni ,m12,ni ,2m21%!G2la(
i F (

mÞm8
ni ,mni ,m8P~$ni%!

1(
m

ni ,m~ni ,m21!P~$ni%!2 (
mÞm8

~ni ,m11!~ni ,m811!P~$ni ,m11,ni ,m811%!

2(
m

~ni ,m12!~ni ,m11!P~$ni ,m12%!G , ~7!
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where the time dependence ofP has been dropped for nota
tional simplicity and $ni ,m11% denotes the configuratio
(ni ,1 ,ni ,2 , . . . ,ni ,m11, . . . ) at site i. The first term in the
right hand side of Eq.~7! describes the loss and gain term
arising from particles diffusing to their nearest neighbo
with rate D. The second term describes the loss and g
terms due to the coagulation of a pair of particles at a
with ratelc to form a new particle whose mass is the sum
the constituents. The third term describes the loss and
terms due to annihilation of a pair of particles at a site w
ratela .

The field theory corresponding to the problem can be
rived from the master equation using Doi’s formalism@26#.
In short, regarding the master equation as a Schro¨dinger
equation in imaginary time, the functional integral repres
tation of the corresponding non-Hermitian evolution opera
is constructed. This allows one to write down a function
integral expression for any correlation function of the pro
lem, includingP̄(m,t). After taking the continuum limit, one
is left with the problem of solving an interacting field theor
The application of Hubbard-Stratonovich transformation
this field theory leaves one with a stochastic partial differ
tial equation. We refer to Refs.@25,27,28# for reviews of this
procedure. Following this procedure, solving the mas
equation Eq.~7! is equivalent to solving the following
Langevin equation for a stochastic fieldP̃(xW ,m,t):

~] t2D¹2!P̃~xW ,m,t !522~lc1la!P̃~xW ,m,t !

3E
0

`

dm8P̃~xW ,m8,t !1lcP̃* P̃

1 iA2~la1lc!j~xW ,t !P̃~xW ,m,t !,

~8!

where P̃* P̃5*0
mdm8P̃(xW ,m8,t) P̃(xW ,m2m8,t), j is white

noise in space and time with unit standard deviation andi 2

521.
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The stochastic fieldP̃(xW ,m,t) is complex and is different
from the local mass distributionP(xW ,m,t), which denotes
the number of particles of massm in the volumeddxdm at
time t. However, the moments ofP are related to the mo
ments of P̃ ~for instance, see Refs.@28,29#!. For example,

P(xW ,m,t)5 P̃(xW ,m,t), P(xW ,m,t)25 P̃(xW ,m,t)@Dm(Dx)d#21

1 P̃(xW ,m,t)2, and so on, where the overbar denotes an av
aging over noise, andDx andDm are lattice cutoffs. In this
paper we only study the first moment ofP(xW ,m,t), and
hence disregard the difference betweenP(xW ,m,t) and
P̃(xW ,m,t) in the rest of the paper.

We will be studying the behavior of the following thre
quantities:

P~m,xW ,t ! for m!M ~ t !, ~9!

N~xW ,t !5E
0

`

dmP~m,xW ,t !, ~10!

r~xW ,t !5E
0

`

dm mP~m,xW ,t !, ~11!

whereN(xW ,t) is the local particle density,r(xW ,t) is the local
mass density, andM (t);r̄(t)/N̄(t) is the typical mass a
time t. The time evolution equations obeyed byN(xW ,t) and
r(xW ,t) are easily obtained from Eq.~8!. As for P(m,xW ,t), for
m!M (t), we neglect the convolution term in the right han
side of Eq.~8!. This approximation is justified because
large times the probability of collision of two light particle
is negligible compared to the probability of collision of
light and a heavy particle. The resulting equations are

~] t2D¹2!N~xW ,t !52~lc12la!N~xW ,t !2

1 iA2~la1lc!j~xW ,t !N~xW ,t !, ~12!
3-3
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~] t2D¹2!P~xW ,m,t !522~lc1la!P~xW ,m,t !N~xW ,t !

1 iA2~lc1la!j~xW ,t !P~xW ,m,t !,

~13!

~] t2D¹2!r~xW ,t !522lar~xW ,t !N~xW ,t !

1 iA2~lc1la!j~xW ,t !r~xW ,t !. ~14!

Note that the dependence ofP on mass is no longer governe
by Eq.~13!. Once the time dependence ofP̄ is calculated, its
mass dependence can be restored using dimensional ana
In the rest of the paper, for the sake of notational simplic
we omit the dependence ofP on mass, unless there is a cau
for confusion.

Equations~12!–~14! can be simplified as follows. Let

lc5
q22

q21
l, ~15!

la5
1

q21
l ~16!

for some parameterl. The above parametrization is com
pletely general. In particular, the parameterq521lc /la
has noa priori relationship with the number of states in th
Potts model. Rescaling the local particle density, local m
distribution, and average density according to

„N~xW ,t !,P~xW ,t !,r~xW ,t !…→S q21

q D „N~xW ,t !,P~xW ,t !,r~xW ,t !…,

~17!

brings Eqs.~12!–~14! into the following form:

~] t2D¹2!N~xW ,t !52lN2~xW ,t !1 iA2lj~xW ,t !N~xW ,t !,
~18!

~] t2D¹2!P~xW ,t !522QlP~xW ,t !N~xW ,t !

1 iA2lj~xW ,t !P~xW ,t !, ~19!

~] t2D¹2!r~xW ,t !522~12Q!lr~xW ,t !N~xW ,t !

1 iA2lj~xW ,t !r~xW ,t !, ~20!

where

Q5
q21

q
. ~21!

It can be shown that Eqs.~18! and ~19! describe the two

species reactionA1A→
l

A, A1B→
Ql

B, in the limit when the
concentration ofA particles is much greater than the conce
tration of B particles.
04610
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III. SCALING ANALYSIS OF STOCHASTIC
EVOLUTION EQUATIONS

In this section, we obtain some exact results for t
model. First, the scaled density of particlesN(xW ,t) obeys the
same equation as the particle density in theA1A→A reac-
tion. For this reaction, the density of particles decays
large times ast2d/2 in d,2 @21,20#. Thus,

N~ t !5c
q21

q

1

td/2
, t→`, ~22!

wherec is a constant depending on dimension only. This i
generalization of the exact one-dimensional result@30,31#.

Second, there is a relation between the local mass di
bution of light particlesP and the local mass densityr.
Under the substitutionQ→(12Q), or equivalentlyq/(q
21)→q, Eq. ~19! transforms into Eq.~20!. Therefore, if
FP(Q,xW1 ,t1 ,xW2 ,t2 , . . . ) is acorrelation function ofP fields,
which is independent of initial conditions, thenFP(1
2Q,xW1 ,t1 ,xW2 ,t2 , . . . ) is the correlation function of the
same configuration ofr fields. In particular, sinceP̄(t)
;t2u(Q), we obtainr(t);t2u(12Q). Thus, we derive Eq.
~2!, namely,

d~Q!5u~12Q!. ~23!

At present, we do not have a simple physical derivation
this exact result. Also, there seems to be no simple way
deriving this relation directly from the master equation~7!.

We now examine Eqs.~18! and~19! for special values of
the parameterQ. WhenQ50, the nonlinear term in Eq.~19!
vanishes and the concentration of monomers is conserve
average. Therefore,u50 for Q50. WhenQ51/2, Eq.~19!
is solved byP;N, whereN is a solution of Eq.~18!. Then,
from Eq.~22!, we obtainu5d/2 for Q51/2. WhenQ51, it
is known thatu5d1e/21O(e2), wheree522d @10#. If
d51, thenu53/2, which is a consequence of an exact s
lution @22#, rather than thee expansion cited above. Collec
ing these results together, we have

u55
0 for Q50,

d

2
for Q5 1

2 ,

d1
e

2
1O~e2! for Q51.

~24!

It is not clear whetheru for Q,1/2 or equivalentlyq,2 has
any physical meaning. We note that for the site persiste
problem in one dimension, the site persistence probability
the q-state Potts model maps on to an Ising system with
initial magnetization given by 2/q21, evolving via zero-
temperature Kawasaki dynamics@18,19,32#. The latter sys-
tem is defined at any value ofq.1. The correspondenc
between these two models also holds for the persiste
probability of a single domain in the Potts model@16#. It
would be interesting to understand what quantity, if any,
3-4
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the Ising model corresponds to the survival probability
domain walls in the Potts model.

IV. PERTURBATIVE COMPUTATION OF PERSISTENCE
EXPONENT NEAR dÄ2

In this section, we calculate the large time behavior
P̄(t) using the formalism of perturbative renormalizatio
group. We closely follow the solution of theAi1Aj→Ai 1 j
model presented in Ref.@10#.

The solution toP̄(t) as a perturbative expansion in pow
ers of l can be constructed from Eqs.~18! and ~19! using
Feynman diagrams@33#. The Feynman rules for constructin
terms of the expansion are summarized in Fig. 1. Diagra
matically, P̄ and N̄ are the sums of all Feynman diagram
with one outgoingP andN line, respectively. Clearly, there
are an infinite number of diagrams contributing toP̄ andN̄.
These diagrams can be grouped together according to
number of loops that they contain, thus giving rise to t
loop expansion. Lete522d. The contribution from each
diagram is a function of the dimensionless termslN0t and
g(t)5lte/2 and an overall factor that gives the correct phy
cal dimension@(lt)21 for N̄ and (lt)22 for P̄]. A simple
combinatorial argument shows that the contribution from
diagram withn loops is proportional tog(t)n @29#. Whene

,0, the main contribution toP̄ andN̄ comes from properly
renormalized tree level diagrams~diagrams without loops!
@34#. When e.0, the loop expansion fails since for larg
times g(t) is no longer a small perturbation parameter. W
therefore conclude that 2 is the upper critical dimension.
d,2 we will use the formalism of perturbative renormaliz
tion group to convert the loop expansion into ane expansion
and calculate scaling exponents as a series ine.

A. Tree level diagrams

Let N̄mf andP̄mf be mean-field densities given by the su
of contributions coming from tree diagrams with a sing
outgoingN line andP line, respectively. We denoteN̄mf and
P̄mf by thick solid lines and thick dashed lines, respective
The integral equations satisfied byN̄mf andP̄mf are presented
in diagrammatic form in Figs. 2~a! and 2~b!. After differen-
tiating with respect to time, they can be written in analy
form as

] t P̄~ t !522Ql P̄~ t !N̄~ t !, ~25!

FIG. 1. Propagators and vertices of the theory.
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] tN̄~ t !52lN̄2~ t !, ~26!

in which one can easily recognize the Smoluchowski r
equations of the model, obtained from Eqs.~18! and~19! by
neglecting the noise terms in the right hand side.

Equations~25! and ~26! are easily solved yielding

N̄mf~ t !5
N0

11lN0t
, ~27!

P̄mf~ t !5
P0

~11lN0t !2Q
. ~28!

From Eq.~28!, we obtain

umf52Q, ~29!

whereumf is the mean-field answer foru.
In calculating loop corrections to any given order, we a

faced with the problem of summing over infinitely man
diagrams containing a given number of loops. This probl
can be simplified by introducing mean-field propagato
which are sums of all tree diagrams with one incoming li
and one outgoing line. Expressed in terms of these me
field propagators, there are only finitely many diagrams w
a fixed number of loops.

Let Gmf
NN andGmf

PP be mean-field propagators. The integr
equations satisfied by them are presented in diagramm
form in Figs. 2~c! and 2~d!. The solutions to these equation
are

Gmf
NN~2u1!5S N̄mf~ t2!

N̄mf~ t1!
D 2

G0~2u1!, ~30!

Gmf
PP~2u1!5S N̄mf~ t2!

N̄mf~ t1!
D 2Q

G0~2u1!, ~31!

FIG. 2. Diagrammatic form of mean-field equations for~a!

mean particle densityN̄, ~b! mean density of mass 1 particlesP̄, ~c!
Gmf

NN , and~d! Gmf
PP.
3-5
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where 15(xW1 ,t1), 25(xW2 ,t2), andG0 is the Green function
of the linear diffusion equation.

B. One-loop diagrams

Using the mean-field propagators and densities, it is e
to classify all one-loop diagrams contributing toP̄(t). These
are shown in Fig. 3. The computation of the correspond
Feynman integrals is straightforward. The contributions fr
one-loop diagrams in the limitN0→` are

~a!5
32QlP0te/2

~8p!d/2~N0lt !2Qe2~e12!
, ~32!

~b!5
264Q2lP0te/2

~8p!d/2~N0lt !2Qe~e12!~e14!
, ~33!

~c!5
2256QlP0te/2

~8p!d/2~N0lt !2Qe2~e12!2~e14!
, ~34!

where (a), (b), and~c! refer to the contributions from dia
grams in Figs. 3~a!, 3~b!, and 3~c! respectively. Adding these
one-loop contributions to the mean-field answer Eq.~28!, we
obtain in the limitN0→`,

P̄~ t !5
A

t2Q
1

32QlA

~8p!d/2et2Q2e/2F e1622Q~e12!

~e12!2~e14!
G

1~ two- and higher-loop corrections!, ~35!

whereA5P0 /(N0l)2Q.

C. Renormalization group analysis of the model

The large-time asymptotic behavior ofP̄(t) can be ob-
tained by solving the Callan-Symanzik equation with init
conditions given by Eq.~35! ~see Ref.@27# for a review!. The
coefficients of Callan-Symanzik equation are determined
the law of renormalization of all the relevant couplings of t
theory Eqs.~18! and~19!. Power counting analogous to th
carried out in@10#, shows that there are only two releva
couplings of the theory ind,2: the reaction ratel and the
initial mass distributionP0. We will derive the one-loop
renormalization law of the initial mass distribution by requ

FIG. 3. One-loop corrections to the mean-field result forP̄.
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ing that Eq.~35! is nonsingular in the limite→0 if expressed
in terms of renormalized relevant couplings.

Let t0 be a reference time andg05lt0
e/2 be the dimension-

less reaction rate. We chooset0 in such a way thatg0!1.
The mechanism of renormalization of the reaction rate in
theory is identical to that of the reactionA1A→A. Physi-
cally, the renormalization of reaction rate is explained by
recurrent property of random walks. The probability of
reaction between particles at timet is proportional to the bare
reaction rate, multiplied by the probability that the reacti
has not occurred before timet. In d<2, the latter probability
explicitly depends on timet. The law of renormalization of
the reaction rate has been worked out in Ref.@20#. If gR is
the renormalized reaction rate, then it is related tog0 by the
relation

gR5
g0

11g0 /g*
, ~36!

whereg* 52pe1O(e2) is the nontrivial fixed point of the
renormalization group flow in the space of effective coupli
constants. The mass distributionP̄(t0) can now be expresse
in terms of the renormalized reaction rategR to be

P̄~ t0!5
P0

~N0gRt0
d/2!2Q F12

gR

g*
Q~2Q21!1O~gR

2 !G .

~37!

The ordergR term in Eq.~37! is singular ate50. To cancel
this divergence, we have to introduce a renormalized ini
mass distributionPR :

PR5Z~gR ,t0 ,e!P0 , ~38!

whereZ(gR ,t0 ,e) is chosen such that

P̄~ t,gR ,PR ,t0!5Z~gR ,t0 ,e!P̄~ t,l,P0 ,e! ~39!

is nonsingular ate50. Substituting Eq.~39! into Eq. ~37!,
we obtain

Z511
gR

g*
Q~2Q21!1O~gR

2 !. ~40!

The Callan-Symanzik equation is obtained by noting t
P̄(t,l,P0 ,e) does not depend on the reference timet0.
Therefore,

t0

]

]t0
@Z21P̄~PR!#50. ~41!

It follows from the dimensional analysis that the most ge
eral form of the average mass distribution is

P̄~ t !5
1

t0
dQ

PR

N0
2Q

FS t

t0
,gRD , ~42!
3-6
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whereF is a dimensionless function. Using the scaling fun
tion Eq. ~42! in Eq. ~41!, we obtain the Callan-Symanzi
equation forP̄(t):

S t
]

]t
1

b~gR!

2

]

]gR
1dQ2

g~gR!

2 D P̄~ t,gR ,PR ,t0!50,

~43!

where

b~gR!522t0

]gR

]t0
5

gR~gR2g* !e

g*
, ~44!

g~gR!5
22t0

Z

]Z

]t0
5

22Q~2Q21!

4p
gR1O~gR

2 ! ~45!

are the beta and gamma functions of the theory.
At large times, the solutions of Eq.~43! are governed by

the nontrivial fixed pointg* of the b function. It then fol-
lows from the Callan-Symanzik Eq.~43! that P̄(t);t2u,
where

u5Qd2
g~g* !

2
. ~46!

The renormalized mean-field or equivalently the Smo
chowski approximation result corresponds to settingg50 in
Eq. ~46!. This leads to an incorrect result asg(g* ) ~anoma-
lous dimension! is not identically zero. From Eqs.~45! and
~46!, we obtain

u5dQ1Q~Q2 1
2 !e1O~e2!, e.0. ~47!

The knowledge ofu to the first order ine combined with
Eqs.~2! and~3! allows one to calculate the exponentsd and
z with the same precision:

d5d~12Q!1~Q2 1
2 !~Q21!e1O~e2!, ~48!

z5~2Q21!e1O~e2!. ~49!

The exponentz is proportional to the sum of the anomalo
dimensions ofP andr. As a result, the mass dependence
P̄(m,t) can be captured neither by mean-field theory nor
Smoluchowski approximation~see Ref.@10# for a more de-
tailed discussion of this point!.

The results of this section can be summarized as follo
The mean mass distributionP̄(m,t) varies as

P̄~m,t !;
~m1/d!(2Q21)e1O(e2)

tdQ1Q(Q21/2)e1O(e2)
, ~50!

for m!M (t), whereM (t) is the typical mass at timet, or
equivalently the typical number of coagulations undergo
by all ancestors of survived particles.P̄(m,t) decays alge-
braically with time with an exponent independent ofm. The
coefficient multiplying this time dependent term does ho
ever grow algebraically withm.
04610
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D. Two dimensions

The upper critical dimension of our model is 2. The no
trivial fixed point of theb-function Eq.~44! vanishes atd
→2. We therefore expect the mean-field answers Eqs.~27!
and ~28! to give the correct large time–small mass of av
age densities in two dimension, modulo logarithmic corre
tions. In this section we calculate these corrections.

When Q51 it was shown that in two dimensions
P̄(m,t); ln(t)ln(m)t22 for t→`,m!M (t) @10#. To calculate
these corrections for arbitraryQ we need to solve the Callan
Symanzik equation~43! with coefficients calculated atd
52. In two dimensions,

b~g!ud525
g2

2p
, ~51!

g~g!ud525
22Q~2Q21!g

4p
1O~g2!. ~52!

Then Eq.~43! reduces to

S t
]

]t
1

gR
2

4p

]

]gR
12Q1

Q~2Q21!gR

4p D P̄~ t,gR ,t0!50,

~53!

which has to be solved with the initial condition

P̄~ t0!5
const

~gRt0!2Q
, ~54!

provided by the mean-field theory. The solution to Eq.~53!
with this initial condition is

P̄~ t !5const3
@ ln~ t/t0!#Q(322Q)

gR
Q(2Q21)t2Q F11OS 1

ln~ t/t0! D G .
~55!

When Q51, we recover the result of Ref.@10#. When Q
50, P(t) ceases to depend on time, as it should. WhenQ

51/2, P̄; ln(t)/t, which coincides with the decay law of th
concentration of particles inA1A→B reaction@20#.

The dimensional arguments that led to Eq.~3! cannot cap-
ture the mass dependent logarithmic corrections that
present in two dimensions. Hence, we need to genera
these dimensional arguments. This is provided by the Cal
Symanzik equation obeyed byP̄(m,t) when considered as
function of bothm and t.

The full distributionP̄(m,t) cannot depend on the choic
of reference timet0, which we introduced to regularize th
perturbative expansion ofP̄(t). Therefore,

t0

] P̄~m,t !

]t0
50. ~56!

From dimensional analysis, it follows that
3-7
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P̄~m,t !5
N̄~ t0!2

r̄~ t0!
FS mN̄~ t0!

r̄~ t0!
,

t

t0
,gRD . ~57!

The form in Eq.~57! is different from the scaling form use
in Eq. ~42! becausePR has to be now expressed in terms
m. Substituting Eq.~57! into Eq. ~56!, we obtain

F ~dr2dN!m
]

]m
2t

]

]t
2

b~gR!

2

]

]gR
1~dr22dN!GF50,

~58!

where dr52(12Q)2(12Q)(112Q)gR /(4p)1O(gR
2)

and dN512gR /(4p)1O(gR
2) are scaling dimensions o

fields N andr, which can be obtained from the correspon
ing loop expansions.

We look for solutions of Eq.~58! of the form

F5F1S t

t0
,gR ,t0DF2S mN̄~ t0!

r̄~ t0!
,gR ,t0D . ~59!

The time dependent functionF1 obeys the Callan-Symanzi
equation~43!. Using this fact and substituting Eq.~59! into
Eq. ~58!, we obtain

Fm
]

]m
1

11O~gR!

2~2Q21!
b~gR!

]

]gR
2G~gR!GF250, ~60!

where G(gR)5(2Q21)gR /(2pd)1O(gR
2). As expected,

when d,2, Q. 1
2 , and t→`, the solution of Eq.~60! is

given by Eq.~50!. Let d52. Solving Eq.~60! for Q> 1
2 with

the initial conditionF2(m0)5const, provided by mean-field
theory, we find that

F2~m!;S lnF m

m0
G D (2Q21)2

@11O„1/ln~m/m0!…#, ~61!

wherem05N̄(t0)/ r̄(t0) is a reference point in mass space
Combining Eqs.~55! and ~61!, we conclude that ind52

P̄~m,t !;
ln~ t !Q(322Q)ln~m!(2Q21)2

t2Q
, ~62!

for m0!m!M (t) and t→`. For Q51 we recover the an
swer for the average mass distribution in theAi1Aj→Ai 1 j
model obtained in Ref.@10#. This result has also been ver
fied numerically@10#. WhenQ51/2, P̄(m,t) no longer de-
pends on mass, as expected.

E. Comparison with results from Monte Carlo simulations

In this section, we compare the results obtained for
exponentsu andd with numerical results in one dimension
The numerical values ofu for Q.1/2 are taken from Refs
@15,3#. ForQ,1/2, we obtain the values foru by performing
Monte Carlo simulations forQ.1/2 and using the relation
Eq. ~23!. The simulations were done on a one-dimensio
lattice containing 53105 sites with periodic boundary con
ditions. Starting from the initial condition in which all site
04610
-

e
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are occupied by a particle, the system is evolved for 14

Monte Carlo steps. The results are averaged over 100 in
pendent runs. Also, infinite reaction rates were used.

Let u1 denote the value ofu obtained by truncating thee
expansion at ordere and settinge51. Then,

u15
Q

2
1Q2. ~63!

In Table I, we compare this analytic expression with resu
from numerical simulations~see columns 2 and 3). There
good agreement.

To go beyond the expression in Eq.~63! and to make an
estimate of the error arising by neglecting terms of ordere2

and higher, we proceed as follows. Let the corrections fr
ordere2 and higher orders be denoted byR(e,Q), such that

u5dQ1Q~Q2 1
2 !e1e2R~e,Q!. ~64!

R(e,Q) must vanish atQ50 and Q51/2 @see Eq.~24!#.
Moreover,R(1,1)50, sinceu53/2 whenQ51 and e51
@22#. Therefore,

R~e,Q!5Q~Q2 1
2 !@~12Q!h1~e,Q!1~e21!h2~e,Q!#,

~65!

whereh1 and h2 are unknown functions. Settinge51, we
obtain

u5
Q

2
1Q21QS Q2

1

2D ~Q21!h1~1,Q!, ~66!

The value of functionh1(1,Q) at Q50 can be determined. I
was shown in Ref.@14# that

TABLE I. The numerically obtained values ofu for different
values ofq are compared withu1 @Eq. ~63!# andu2 @Eq. ~68!#. For
q,2, the numerical values are obtained by measuring the deca
mean density and then using Eq.~2! . For q.2, the numerical
results are from Refs.@3# and @15#.

q Numerical u1 u2

1.11 0.0860.01 0.06 0.08
1.25 0.1860.01 0.14 0.17
1.50 0.3260.01 0.28 0.30
1.77 0.4160.01 0.41 0.42
2.00 0.50 0.50 0.50
3.00 0.7360.01 0.78 0.75
4.00 0.8760.01 0.94 0.91
5.00 0.9660.01 1.04 1.01
6.00 1.0460.01 1.11 1.08
8.00 1.1260.01 1.20 1.17
16.00 1.2860.01 1.35 1.33
25.00 1.3560.01 1.40 1.39
32.00 1.3860.01 1.42 1.41
50.00 1.4260.01 1.45 1.44
` 1.50 1.50 1.50
3-8
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u5
3A3

2p
Q1O~Q2!. ~67!

Therefore,h1(1,0)53A3/p21. A two-loop calculation car-
ried out in Sec. V shows that the functionh1(1,Q) is slowly
varying in the intervalQP@0,1#. Therefore, we replace th
functionh1(1,Q) by its value atQ50 and denote the result
ing expression asu2. Thus, we obtain

u25
Q

2
1Q21QS Q2

1

2D ~Q21!S 3A3

p
21D . ~68!

In Table I, we compareu2 with u1 and results from Monte
Carlo simulations in 1 dimension. The error decreases
compared tou1. In Fig. 4, we also compare the analytic
results foru with the mean-field and renormalized mea
field results. Unlike the mean-field answers, the one-
two-loop answers agree with numerical results both qua
tively and quantitatively.

The error due to dropping terms of ordere2 and higher
can be estimated. The functionh1(1,Q) in Eq. ~66! is of
order 1. The functionuQ(Q21/2)(Q21)u takes on a maxi-
mum value of 0.05 . . . in theintervalQP@0.5,1#. Hence the
absolute error is of order 0.05, which is in agreement w
the results presented in Table I.

We do a similar analysis ford. Let d1 be the value ofd
obtained by truncating the series Eq.~48! at ordere and then
settinge51. Then

d15
3

2
2

5Q

2
1Q2. ~69!

To obtaind2, we substituteQ→(12Q) in Eq. ~68! to obtain

d25
3

2
2

5Q

2
1Q22QS Q2

1

2D ~Q21!S 3A3

p
21D .

~70!

FIG. 4. The numerically obtained values ofu for different val-
ues ofQ are compared with the two-loop answeru2, Eq. ~68! ~solid
line!, one-loop answeru1, Eq. ~63! ~dashed line!, renormalized
mean-field answer, Eq.~46! with g50 ~dot-dashed line! and mean-
field answer, Eq.~29! ~dotted line!.
04610
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In Table II, we compare the resultsd1 and d2 with results
from numerical simulations. Very good agreement is see

V. THE ANALYSIS OF TWO- AND HIGHER-LOOP
CORRECTIONS

A. General structure of the loop expansion

In this section, we examine the contributions from d
grams with two and more loops. It will be shown that th
coefficient ofen in the e expansion ofu is a polynomial of
degree 2n in Q. It is easier to derive the result, not by usin
the formalism of renormalization group, but by identifyin
the principal set of diagrams contributing to the large tim
limit of P̄(t) and deriving a simple integral equation satisfi
by the sum of these diagrams.

The polarization operatorP(t2 ,t1) is defined as the sum
of all one-particle irreducible diagrams with one outgoi
and one incomingP line, with the external propagator line
stripped off. Using the polarization operator, we can wr
down the Schwinger-Dyson equation obeyed byP̄(t). Let
P̄(t) andP(t2 ,t1) be denoted by a thick dashed-dotted li
and by a gray circle, respectively. Then,P̄(t) satisfies the
equation shown diagrammatically in Fig. 5~a!. In equation
form, it is

TABLE II. The numerically obtained values ofd for different
values ofq are compared withd1 @Eq. ~69!# andd2 @Eq. ~70!#.

q Numerical d1 d2

2 0.50 0.50 0.50
3 0.3160.01 0.28 0.30
4 0.2260.01 0.19 0.22
5 0.1860.01 0.14 0.17
8 0.1160.01 0.08 0.10
16 0.0560.01 0.04 0.05
` 0.00 0.00 0.00

FIG. 5. ~a! Schwinger-Dyson equation forP̄(t). ~b! Perturbative
expansion of the polarization operatorP.
3-9
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P̄~ t !5 P̄mf~ t !1
1

t2QE0

t

dt2 t2
2QE

0

t2
dt1P~ t2 ,t1!P̄~ t1!.

~71!

In two dimensions,P̄(t);t22Q. Let h(t)5t2QP̄(t). In
terms ofh, Eq. ~71! reduces to

h~ t !5h01E
0

t

dt2E
0

t2
dt1@ t2

2QP~ t2 ,t1!t1
22Q#h~ t1!,

~72!

whereh0 is a constant independent oft. Differentiating with
respect tot, we obtain

dh~ t !

dt
5E

0

t

dt1@ t2QP~ t,t1!t1
22Q#h~ t1!. ~73!

The expansion ofP(t,t1) in terms of Feynman diagrams
shown in Fig. 5~b!. From the Feynman diagrams in Fig. 1,
follows that the number of dotted lines in any given diagra
is conserved as one moves from right to left. Any diagr
contributing to the polarization operator has a single dot
line threading through it from right to left. Also, the onl
vertex that contributes a factorQ is the PPN vertex. There
fore, theQ-dependent part of a given diagram has the fo
QNo. of PPN vertices) i(t i /t i 11)2Q, where the product is over a
vertices involving theP line. For ak-loop diagram, we can
have at most 2k vertices of the type PPN. Also, it was show
in Ref. @10# that n-loop diagrams contribute at the orderen

only. Hence, after coupling constant renormalization, o
finds that the expression in square brackets of Eq.~73! is of
the formt22(n51

` enP2n(Q), whereP2n(Q) is a polynomial
of degree 2n in Q, and where the factort22 has been pulled
out to give the right dimension.

We can now solve Eq.~73! perturbatively, order by orde
in e. Simple dimension counting shows th
t2QP(t,t1)t1

22Q5t22F(t1 /t), where F(t) is a dimension-
less function. The previous argument shows thatF(t)
5(n51

` enP2n(Q). Assume a power law solution forh, i.e.,
h5ct2up whereup5(n51anen andc is a constant. Then Eq
~73! simplifies to

up52E
0

1

dtF~t!t2up. ~74!

ExpandingF(t) andup as series ine, we obtain

(
n51

`

anen52E
0

1

dt (
n151

`

P2n1
en1 (

n250

`
@2upln~t!#n2

n2!
.

~75!

Solving Eq.~75! order by order foran , it is easy to verify
that the coefficient ofen is a polynomial of degree 2n in Q,
i.e.,
04610
d

e

u5 (
n50

`

enS (
p50

2n

Cn,pQpD , ~76!

whereCn,p’s are some unknown constants.
Given Eq.~76!, it is easy to rederive the one-loop corre

tion to u @Eq. ~47!# obtained by the renormalization grou
formalism. The three unknowns in the coefficient ofe in Eq.
~76! are obtained from the exact results in Eq.~24! giving
C1,050, C1,1523/2, andC1,251.

B. Two-loop formula for z„Q…

As the mean-field answer for the exponentz is 0, it is
desirable to evaluate ordere2 correction to Eq.~49!. This
requires the knowledge of ordere2 term in u.

From Sec. V A, we know that the term ine2 is a polyno-
mial of degree 4 inQ, i.e.,

u5dQ1QS Q2
1

2D e1S (
k50

4

C2,kQ
kD e21O~e3!. ~77!

Out of the five unknownC2,k’s, two are fixed by the condi-
tions thatu50 for Q50 andu5d/2 for Q51/2 @see Eq.
~24!#. For Q51, it is known thatu5d1e/21O(e2) @10#.
We assume that the ordere2 term is absent whenQ51 ~see
the Appendix for a heuristic validation of this assumption!.
This fixes the third constant and we are left with

u5dQ1Q~Q2 1
2 !e1Q~Q2 1

2 !~Q21!~AQ1B!e2

1O~e3!, ~78!

whereA andB are constants.
The constantA is not difficult to calculate. The contribu

tion to u of ordere2Q4 comes from the square of one-loo
polarization operator and from two-loop diagrams with fo
PPN vertices. There are only two such diagrams, which
shown in Fig. 6. The numerical computation of correspon
ing Feynman integrals gives

A5S p2

3
23D20.296 . . .'20.006, ~79!

where the first term on the right hand side comes from
order-e2 term in the one-loop polarization operator.

The calculation of constantB seems an almost impossib
task, as there are over 20 two-loop diagrams contributing

FIG. 6. The two-loop diagrams contributing to the constantA in
Eq. ~78!.
3-10
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it. However, the terms proportional toB drop out of the the
two-loop expression forz. Substituting Eq.~78! into Eq. ~3!
one finds that

z5~2Q21!e1~2Q21!~Q21!~ 1
2 1AQ!e21O~e3!.

~80!

In Table III, we compare the one-loop expression forz @Eq.
~49!# and the two-loop expression forz @Eq. ~80!# with nu-
merical results in one dimension.

VI. SUMMARY AND CONCLUSIONS

In summary, we develop a systematic method to calcu
the persistence exponentu for a system of coagulating an
annihilating random walkers, in arbitrary dimensions. In o
dimension, this corresponds to persistence probabilities
domain walls in the Potts model evolving via zer
temperature Glauber dynamics. We establish an exponen
lation by which the number of unknown exponents in t
problem is reduced from two to one. The unknown pers
tence exponentu is determined perturbatively using the fo
malism of renormalization group.

The persistence problem studied in this paper can be
sidered as a special case of a more general problem o
survival probability of a test particle with diffusion consta
k times the diffusion constant of the other particles. In t
case it is known that the persistence exponentuk(q) depends
on k @14,3#. While simple limiting cases have been studi
@14,35–37# via numerics, mean-field or perturbative tec
niques, a general understanding is still lacking. It would
interesting to extend the formalism of perturbative renorm
ization group to calculateuk(q).
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APPENDIX: MASS DISTRIBUTION
IN THE Ai¿Aj\Ai¿ j MODEL

In this appendix, we present a heuristic derivation of
distribution of small masses in theAi1Aj→Ai 1 j model.

TABLE III. Comparison of one-loop@Eq. ~49!# and two-loop
@Eq. ~80!# results forz with numerical simulations in one dimen
sion.

q Numerical one-loop two-loop

2 0.00 0.00 0.00
3 0.2160.11 0.33 0.28
4 0.3260.08 0.50 0.44
5 0.4460.08 0.60 0.54
8 0.5960.07 0.75 0.70
16 0.7360.06 0.88 0.85
` 1.00 1.00 1.00
04610
te

e
of

re-

-

n-
he

s

e
l-

e

This model corresponds to theQ51 limit of the model dis-
cussed in the paper. For theAi1Aj→Ai 1 j model, it is
known @22,10# that for m!td/2,

P̄~m,t !;

¦

m

t3/2
in d51,

m(e1O(e2))/d

td1e/21O(e2)
in 1<d,2,

ln~m!ln~ t !

t2
in d52,

1

t2
in d.2.

~A1!

In this appendix, we give a heuristic argument as to why
terms of ordere2 and higher could be absent, as a result
which the expansion up to ordere gives the exact answer.

Putting la50 in Eq. ~8!, we obtain that the mass distr
bution P(m,x,t) evolves according to

S ]

]t
2D¹2D P5lcP* P22lcNP1 iA2lcjP, ~A2!

whereN5*0
`dmP(m) is the density of particles andP* P

5*0
mdm8P(m8)P(m2m8). The density obeys the equation

S ]

]t
2D¹2DN5lcN

21 iA2lcjN. ~A3!

Let

F~s,t !5E
0

`

dmP~m,t !e2ms ~A4!

be the Laplace transform ofP(m,t). Then,

B~s,t !5N~ t !2F~s,t ! ~A5!

obeys the equation

S ]

]t
2D¹2DB5lcB

21 iA2lcjB. ~A6!

The functionB(s,t) obeys the same equation as the dens
N @25#. However, the initial conditions att50 are different.
If the initial density of particlesN(0)5N0, then B(s,0)
5N0(12e2s). Therefore, if the average particle density
N̄(N0 ,t), then

F̄~s,t !5N̄~N0 ,t !2N̄„N0~12e2s!,t…. ~A7!

The functionF(s,t) will have the scaling form

F̄~s,t !;
1

td/2
g~std/2!, ~A8!
3-11
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where the scaling functiong(x);x2f for x@1. On per-
forming the inverse Laplace transform, we obtain

P̄~m,t !;
mf21

td/2(11f)
. ~A9!

Thus, iff were equal to 2/d, the expression in Eq.~A1! to is
exact ordere.

To calculatef, we look at the behavior of the particl
densityN̄. It is expected to have the scaling form

N̄5N0h~N0td/2!, ~A10!

where the scaling functionh(x) behaves for largex as

h~x!;
1

x S 11
1

xcD , x@1, ~A11!

wherec is some exponent greater than zero.
Substituting Eqs.~A10! and ~A11! into Eq. ~A7!, it is

straightforward to verify that
th

v.

04610
f5c. ~A12!

In one and two dimensions, it is easy enough to verify t
c52 andc51, respectively, consistent with the exact r
sults in Eq.~A1!. In other dimensions, we argue as follow
The density of particles in theAi1Aj→Ai 1 j model is in-
versely proportional to the area swept out by a rand
walker in time t. This area varies as (At1c)d, wherec is
some constant. Then, the particle density decays asN̄
;t2d/2(12const/t), such that

c5
2

d
. ~A13!

Substituting into Eq.~A9!, we obtain

P̄~m,t !;
m(22d)/d

td/211
. ~A14!

which is the one-loop answer in Eq.~A1!.
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